Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anal Biochem ; 690: 115529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38582243

ABSTRACT

Alchemilla vulgaris L., Trifolium pratense L. and Glycyrrhiza glabra L. are important remedies in traditional medicine, known for many usages, including treating gynecological diseases. Despite folkloric use of the plant materials, there is a lack of scientific data to support their therapeutic application. The aims of the present study were to evaluate the relative binding affinities (RBAs) of plant-derived phytoestrogens for estrogen receptor ß (ERß) using fluorescent biosensor in yeast and to apply this assay for the assessment of the potential of plant materials towards ERs and treatment of estrogen-related disorders. Ligand-binding domain of ERß fused with yellow fluorescent protein (ERß LBD-YFP) was expressed in S. cerevisiae and fluorescence was detected by fluorimetry and fluorescence microscopy. Structural basis for experimental results was explored by molecular docking. Yeast-based fluorescent assay was successfully optimized and applied for identification of natural phenolic compounds and phytoestrogen-rich plant extracts that interact with ERß-LBD, making this biosensor a valuable tool for screening estrogenic potential of a variety of plant extracts. This assay can be used for preliminary testing of plant-derived or fungal extracts, but also other sources of environmental substances with ER-modulating activity in order to assess their possible effects on the female reproductive system.

2.
Future Med Chem ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629440

ABSTRACT

Aim: The aim of this study was the synthesis of steroid compounds with heterocyclic rings and good anticancer properties. Materials & methods: The synthesis, in silico and in vitro anticancer testing of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives was performed. Results: All synthesized compounds have shown promising results for, antiproliferative activity, relative binding affinities for the ligand binding domains of estrogen receptors α, ß and androgen receptor, aromatase binding potential, and inhibition of AKR1C3 enzyme. Conclusion: 3-Benzyloxy (17E)-pycolinilidene derivative 9 showed the best antitumor potential against MDA-MB-231 cell line, an activity that can be explained by its moderate inhibition of AKR1C3. Molecular docking simulation indicates that it binds to AKR1C3 in a very similar orientation and geometry as steroidal inhibitor EM1404.

3.
J Steroid Biochem Mol Biol ; 233: 106362, 2023 10.
Article in English | MEDLINE | ID: mdl-37451557

ABSTRACT

Cancer remains a major health concern worldwide. The most frequently diagnosed types of cancer are caused by abnormal production or action of steroid hormones. In the present study, the synthesis and structural characterization of new heterocyclic androstane derivatives with D-homo lactone, 17α-(pyridine-2''-ylmethyl) or 17(E)-(pyridine-2''-ylmethylidene) moiety are presented. All compounds were evaluated for their anti-proliferative activity against HeLa cervical cancer cell line and non-cancerous kidney MDCK cells, where A-homo lactam compound 9A showed the greatest selectivity. Based on in vitro binding assays, N-formyl lactam compound 18 appeared to be the strong and isoform-selective ligand for ERα, while compound 9A displayed binding affinity for the GR-LBD, but also inhibited aldo-keto reductase 1C4 enzyme. Out of four selected compounds, methylpyrazolo derivative 13 showed potential for aromatase binding, while in silico studies provided insight into experimentally confirmed protein-ligand interactions.


Subject(s)
Androstanes , Antineoplastic Agents , Humans , Ligands , Androstanes/pharmacology , Androstanes/chemistry , Steroids/metabolism , Lactams/pharmacology , Structure-Activity Relationship , Cell Proliferation , Molecular Structure , Drug Screening Assays, Antitumor , Cell Line, Tumor
4.
RSC Med Chem ; 14(2): 341-355, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36846371

ABSTRACT

Aldo-keto reductase 1C3 (AKR1C3) catalyzes the reduction of androstenedione to testosterone and reduces the effectiveness of chemotherapeutics. AKR1C3 is a target for treatment of breast and prostate cancer and AKR1C3 inhibition could be an effective adjuvant therapy in the context of leukemia and other cancers. In the present study, steroidal bile acid fused tetrazoles were screened for their ability to inhibit AKR1C3. Four C24 bile acids with C-ring fused tetrazoles were moderate to strong AKR1C3 inhibitors (37-88% inhibition), while B-ring fused tetrazoles had no effect on AKR1C3 activity. Based on a fluorescence assay in yeast cells, these four compounds displayed no affinity for estrogen receptor-α, or the androgen receptor, suggesting a lack of estrogenic or androgenic effects. A top inhibitor showed specificity for AKR1C3 over AKR1C2, and inhibited AKR1C3 with an IC50 of ∼7 µM. The structure of AKR1C3·NADP+ in complex with this C-ring fused bile acid tetrazole was determined by X-ray crystallography at 1.4 Å resolution, revealing that the C24 carboxylate is anchored to the catalytic oxyanion site (H117, Y55); meanwhile the tetrazole interacts with a tryptophan (W227) important for steroid recognition. Molecular docking predicts that all four top AKR1C3 inhibitors bind with nearly identical geometry, suggesting that C-ring bile acid fused tetrazoles represent a new class of AKR1C3 inhibitors.

5.
Steroids ; 188: 109118, 2022 12.
Article in English | MEDLINE | ID: mdl-36183814

ABSTRACT

New steroidal D-homo androstane derivative, 5α,6ß-dibromo-3ß-hydroxy-17-oxa-17a-homoandrostan-16-one was synthesized and its structure was confirmed by NMR spectroscopy. In silico ADME properties of this compound were assessed using the SwissADME online prediction tool. Six human cancer cell lines (MDA-MB-231, MCF-7, PC3, HT-29, HeLa, and A549) and one human noncancerous cell line (MRC-5) were used for in vitro cytotoxicity testing. Novel steroidal dibromide was also tested for relative binding affinity for the ligand binding domain of estrogen receptor α and ß or the androgen receptor using a published assay in yeast cells. Ligand binding domains of each steroid receptor were expressed in-frame with yellow fluorescent protein in yeast and the fluorescence intensity changes upon addition of test compound was measured. The new compound showed selective cytotoxic activity against HT-29 (colon adenocarcinoma) and A549 (lung adenocarcinoma) cell lines, as well as the potential to induce apoptosis in HT-29 cells, while results obtained from ligand binding assay in yeast suggested a lack of significant estrogenic or androgenic properties.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Humans , Lactones/pharmacology , Cell Line, Tumor , Saccharomyces cerevisiae , Ligands , Steroids/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation
6.
Colloids Surf B Biointerfaces ; 216: 112597, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35636320

ABSTRACT

Chemically modified steroids have a long history as anti-neoplastic drugs. Incorporation of a lactone moiety in the steroid nucleus, as in previously obtained 3ß-acetoxy-17-oxa-17a-homoandrost-5-en-16-one (A) and 3ß-hidroxy-17-oxa-17a-homoandrost-5-en-16-one (B), often results in enhanced anticancer properties. In this work, chitosan-based (Ch) nanoparticles were created and loaded with potent anticancer steroidal compounds, A and B. Changes to hormone receptor binding and cytotoxicity were then measured. In agreement with our previous results for A and B, A- and B-loaded Ch displayed cytotoxic properties against cancer cell lines. Both A-Ch and B-Ch showed activity toward estrogen negative breast cancer (MDA-MB-231) and androgen negative prostate cancer cell lines (PC-3). Greater selectivity toward cancer cells versus healthy lung fibroblast (MRC-5) was observed for B-Ch particles. Cell viability and cytotoxicity measurements after a recovery period indicate more robust recovery of healthy cells versus malignant cells. Compounds A and B or their Ch-encapsulated forms were shown to have negligible affinity for the ligand binding domain of estrogen receptor ß or the androgen receptor in a fluorescent yeast screen, suggesting a lack of estrogenicity and androgenicity. Steroid-loaded chitosan nanoparticles display strong cytotoxicity towards MDA-MB-231 and PC-3 with a lack of hormone activity, indicating their safety and efficacy.


Subject(s)
Breast Neoplasms , Chitosan , Nanoparticles , Prostatic Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Chitosan/chemistry , Hormones , Humans , Lactones , Male , Steroids/chemistry , Steroids/pharmacology
7.
Mol Inform ; 41(10): e2100256, 2022 10.
Article in English | MEDLINE | ID: mdl-35393780

ABSTRACT

Human aldo-keto reductase 1C isoforms (AKR1C1-C4) catalyze reduction of endogenous and exogenous compounds, including therapeutic drugs, and are associated with chemotherapy resistance. AKR1C2 is involved in metastatic processes and is a target for the treatment of various cancers. Here we used molecular docking to explore the potential of a series of eleven bile acid methyl esters as AKR1C2 inhibitors. Autodock 4.2 ranked 10 of the 11 test compounds above a decoy set generated based on ursodeoxycholic acid, a known AKR1C2 inhibitor, while 5 of these 10 ranked above 94 % of decoys in Autodock Vina. Seven inactives reported in the literature not to inhibit AKR1C2 ranked below the decoy threshold: 5 of these are specific inhibitors of AKR1C3, a related isoform. Using the same parameters, Autodock Vina identified steroidal analogs of AKR1C substrates, bile acids, and AKR1C inhibitors in the top 5 % of a virtual screen of a natural product library. In experimental assays, 6 out of 11 of the tested bile acid methyl esters inhibited >50 % of AKR1C2 activity, while 2 compounds were strong AKR1C3 inhibitors. Potential off-target interactions with the glucocorticoid receptor were measured using a yeast-based fluorescence assay, where results suggest that the methyl ester could interfere with binding. The top ranking compound based on docking and experimental results showed dose-dependent inhibition of AKR1C2 with an IC50 of ∼3.6 µM. Molecular dynamics simulations (20 ns) were used to explore potential interactions between a bile acid methyl ester and residues in the AKR1C2 active site. Our molecular docking results identify AKR1C2 as a target for bile acid methyl esters, which combined with virtual screening results could provide new directions for researchers interested in synthesis of AKR1C inhibitors.


Subject(s)
Biological Products , Molecular Dynamics Simulation , Aldo-Keto Reductases/metabolism , Bile Acids and Salts , Esters , Humans , Molecular Docking Simulation , Protein Isoforms/metabolism , Receptors, Glucocorticoid , Ursodeoxycholic Acid
8.
RSC Med Chem ; 12(2): 278-287, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-34046616

ABSTRACT

Herein, we present microwave-assisted AlCl3 catalyzed oxidation of bile acid hydroxyl groups in the presence of Oxone® in water media. Significant rate enhancements were observed for Wolff-Kishner reduction of synthesized bile acids oxo derivatives to the 5ß-cholanic acid. Reaction of amidation of the simplest bile acid and aminolysis of the deoxycholic acid was accomplished in the absence of solvent and catalysts under sealed vessel microwave conditions. Because 5ß-cholanic acid reportedly modulates glucocorticoid receptor signaling in cell models of Parkinson's disease, we tested the affinity of 5ß-cholanic acid and deoxycholic acid derivatives for the glucocorticoid receptor in vitro using a yeast-based fluorescent screen. Treatment of GR-expressing yeast with prednisolone resulted in a dose-dependent increase in fluorescence; whereas 5ß-cholanic acid binds to the glucocorticoid receptor with more moderate affinity. Similarly, molecular docking also suggests that 5ß-cholanic acid can bind to the glucocorticoid receptor, with similar geometry to known GR ligands.

9.
Bioorg Med Chem ; 30: 115935, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33340938

ABSTRACT

A series of 5,6-modified steroidal d-homo lactones, comprising of halogenated and/or oxygenated derivatives, was synthesized and evaluated for potential anticancer properties. Preparation of many of these compounds involved investigating alternative synthetic pathways. In silico ADME testing was performed for both novel and some previously synthesized compounds. Calculated physicochemical properties were in accordance with the Lipinski, Veber, Egan, Ghose and Muegge criteria, suggesting the potential of these molecules as orally active agents. Cytotoxicity of the synthesized steroid derivatives was tested on six tumor and one normal human cell line. None of the investigated derivatives was toxic to non-cancerous MRC-5 control cells. Most of the compounds showed significant cytotoxicity against the treated cancer cell lines. Most notably, the 3ß,5α,6ß-trihydroxy derivative exhibited strong cytotoxicity against multiple cell lines (MCF-7, MDA-MB-231 and HT-29), with the highest effect observed for lung adenocarcinoma (A549) cells, for which this steroid was more cytotoxic than all of the three commercial chemotherapeutic agents used as reference compounds. Molecular docking suggests the 3ß,5α,6ß-trihydroxy derivative could bind the EGFR tyrosine kinase domain with high affinity, providing a potential mechanism for its cytotoxicity via inhibition of EGFR signaling. The most active compounds were further studied for their potential to induce apoptosis by the double-staining fluorescence method; where the 5α,6ß-dibromide, 5α,6ß-dichloride and 3ß,5α,6ß-triol induced apoptotic changes in all three treated cell lines: MDA-MB-231, HT-29 and A549. To predict interactions with nuclear steroidal receptors, affinity for the ligand binding domains of ERα, ERß and AR was measured using a yeast-based fluorescence assay. The 5ß,6ß-epoxide, dibromide and 5α-hydroxy-3,6-dioxo derivatives showed affinity for ERα, while the 5α-fluoro-6ß-hydroxy and 3ß-acetoxy-5α,6ß-dihydroxy derivatives were identified as ERß ligands. None of the tested compounds showed affinity for AR. Structure-activity relationships of selected compounds were also examined.


Subject(s)
Antineoplastic Agents/pharmacology , Lactones/pharmacology , Oxygen/pharmacology , Steroids/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Halogenation , Humans , Lactones/chemical synthesis , Lactones/chemistry , Models, Molecular , Molecular Structure , Oxygen/chemistry , Steroids/chemical synthesis , Steroids/chemistry , Structure-Activity Relationship
10.
Medchemcomm ; 9(6): 969-981, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-30108986

ABSTRACT

New A-ring pyridine fused androstanes in 17a-homo-17-oxa (d-homo lactone), 17α-picolyl or 17(E)-picolinylidene series were synthesized and validated by X-ray crystallography, HRMS, IR and NMR spectroscopy. Novel compounds 3, 5, 8 and 12 were prepared by treatment of 4-en-3-one or 4-ene-3,6-dione d-modified androstane derivatives with propargylamine catalyzed by Cu(ii), and evaluated for potential anticancer activity in vitro using human cancer cell lines and recombinant targets of steroidal anti-cancer drugs. Pyridine fusion to position 3,4 of the A-ring may dramatically enhance affinity of 17α-picolyl compounds for CYP17 while conferring selective antiproliferative activity against PC-3 cells. Similarly, pyridine fusion to the A-ring of steroidal d-homo lactones led to identification of new inhibitors of aldo-keto reductase 1C3, an enzyme targeted in acute myeloid leukemia, breast and prostate cancers. One A-pyridine d-lactone steroid 5 also has selective submicromolar antiproliferative activity against HT-29 colon cancer cells. None of the new derivatives have affinity for estrogen or androgen receptors in a yeast screen, suggesting negligible estrogenicity and androgenicity. Combined, our results suggest that A-ring pyridine fusions have potential in modulating the anticancer activity of steroidal compounds.

11.
Steroids ; 130: 22-30, 2018 02.
Article in English | MEDLINE | ID: mdl-29224741

ABSTRACT

Synthesis and biological evaluation of steroidal derivatives with anticancer properties is an active area of drug discovery. Here we measured the relative affinities of d-seco modified steroidal derivatives for estrogen receptor α, estrogen receptor ß or androgen receptor ligand binding domains using an optimized non-transcriptional fluorescent cell assay in yeast. Ligand binding domains of steroid receptors were expressed in-frame with yellow fluorescent protein in the yeast Saccharomyces cerevisiae. Addition of known steroid ligands to yeast expressing the appropriate cognate receptor results in increased fluorescence intensity, enabling estimation of receptor binding affinities in a dose-response and time-dependent manner. Relative binding affinities of d-seco modified steroidal derivatives 1-4 were then evaluated using this yeast system by live cell fluorimetry and fluorescence microscopy, coupled with in vitro cytotoxicity and in silico molecular docking studies. d-Seco estratriene derivative 2displayed strong affinity for both estrogen receptor α and ß ligand binding domains and negligible affinity for the androgen receptor ligand binding domain. Compound 2 also showed moderate cytotoxicity against estrogen receptor positive MCF-7 breast adenocarcinoma cells. In addition to identification of new ligands for steroid receptors, this assay could also be used to filter out compounds with potential for off-target interactions with steroid receptors during the early stages of compound screening.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Receptors, Steroid/metabolism , Saccharomyces cerevisiae/metabolism , Biosensing Techniques , Female , Humans , MCF-7 Cells , Microscopy, Fluorescence , Molecular Structure , Steroids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...